Firebolt is built on a natively decoupled storage & compute architecture, on AWS only. Data has to be copied outside of your VPC into the Firebolt, where both your compute and data run in a dedicated and isolated tenant. A “Firebolt Engine” can be granularly configured across # of nodes and different CPU/RAM/SSD combinations.
Snowflake was one of the first decoupled storage and compute architectures, making it the first to have nearly unlimited compute scale and workload isolation, and horizontal user scalability. It runs on AWS, Azure and GCP. It is multi-tenant over shared resources in nature and requires you to move data out of your VPC and into the Snowflake cloud. “Virtual Private Snowflake” (VPS) is its highest-priced tier, and can run a dedicated isolated version of Snowflake. Its virtual warehouses can be T-shirt sized along an XS/S/M…/4XL axis, where each discrete T-shirt size is bundled with fixed HW properties that are abstracted from the users. Snowflake has recently added support for Snowflake managed Iceberg tables.
Firebolt can handle the largest data volumes and concurrency on a single comparable cluster size, thanks to its superior hardware efficiency. Thanks to its decoupled storage & compute architecture it scales very well to large data volumes. However, resizing an engine size isn’t instant and requires orchestration if avoiding downtime is necessary. A single Firebolt engine can support hundreds of concurrent queries, avoiding the need to scale out for most use cases. Scaling horizontally for even higher concurrency is manual.
Snowflake scales very well both for data volumes and query concurrency. The decoupled storage/compute architecture supports resizing clusters without downtime, and in addition, supports auto-scaling horizontally for higher query concurrency during peak hours.
Firebolt is the fastest when it comes to query performance when compared to cloud data warehouses and services like Athena. Its unique approach to storage and indexing results in highly aggressive data pruning that scans dramatically less data compared to other technologies. While other technologies scan partitions or micro-partitions, Firebolt works with indexed data ranges, that are significantly smaller. In addition, Firebolt lets user accelerate queries further with multiple index types (Aggregating index, Join index), and using its decoupled storage & compute architecture workloads can be easily isolated to guarantee consistent performance.
Snowflake typically comes on top for most queries when it comes to performance in public TPC-based benchmarks when compared to BigQuery and Redshift, but only marginally. Its micro partition storage approach effectively scans less data compared to larger partitions. The ability to isolate workloads over the decoupled storage & compute architecture lets you avoid competition for resources compared to multi-tenant shared resource solutions, and the ability to increase warehouse sizes can often enhance performance (for a higher price), but not always linearly. Snowflake’s recently released “Search optimization service” delivers index-like behavior for point queries, but comes at an additional cost.
Firebolt stands out by being the fastest cloud data warehouse when compared to Snowflake, Redshift, BigQuery and Athena. It’s great for delivering sub-second analytics at scale, while remaining hardware efficient and high concurrency friendly. This makes it a great choice for operational use cases and customer-facing data apps. Given that it is not as feature-rich and integration rich as the more mature data warehouses makes it a lesser fit for a general-purpose Enterprise data warehouse. It is also not the best fit for ad-hoc use cases, because of the need to predefine indexing at the table level.
Snowflake is a well rounded general purpose cloud data warehouse, that can also span beyond traditional BI & Analytics use cases into Ad-Hoc and ML use cases. Thanks to the flexible decoupeld storage & compute architecture that allows you to isolate and control the amount of compute per workload, it’s possible to tackle a broad spectrum of workloads. However, like its close siblings Redshift & BigQuery, it struggles to deliver low-latency query performance at scale, making it a lesser fit for operational use cases and customer-facing data apps.