BigQuery was one of the first decoupled storage and compute architectures. It is a unique piece of engineering and not a typical data warehouse in part because it started as an on-demand serverless query engine. It runs in multi-tenancy with shared resources, allocated as “slots” which represent a virtual CPU that executes SQL. BigQuery determines how many slots a query requires, without the ability of the user to control it. BigQuery can be priced on a $/TB scanned basis or through slot reservations. A slot in BigQuery is logically equivalent to 0.5 vCPU and 0.5GB of RAM. There are multiple models to allocate slots in BigQuery.
Databricks was built by the founders of Spark as an analytics platform to support machine learning use cases. It leverages the Spark framework to process data residing in a data lake and is supported on AWS, GCP and Azure. Databricks coined the marketing term “Lakehouse '' architecture to illustrate the unification of data lake and data warehouse use cases. Customers still manage Spark clusters that process data residing in a Delta lake. Conversion of data to Delta Lake format is required to leverage the functionality of Delta Lake. Databricks Sql is a relatively new addition to simplify access to data stored in a data lake.
BigQuery scales very well to large data volumes, and automatically assigns more compute resources when needed behind the scenes, in the form of “slots”. BigQuery works either in an “on-demand pricing model”, where slot assignment is completely in the hands of BigQuery and the state of the shared resource pool, or in “flat-rate pricing model” where slots are reserved in advance. With reserved slots there is more control over compute resources, thus making scaling more predictable. Concurrency is limited to 100 users by default.
Databricks allow for autoscaling of clusters based on utilization. Additionally, increasing concurrency associated with a sql endpoint can be accomplished through the addition of clusters. Query concurrency per cluster is maxed at 10. However, scaling with additional clusters for concurrency is possible. Databricks provides a choice of instance types.
BigQuery lines up in benchmarks in the same ballpark as other cloud data warehouses but does come in consistently last in most queries. Beyond implementing according to best practices, there is little you can do to accelerate BigQuery performance, as it determines the amount of resources (slots) the query needs for you. BigQuery can be used together with the “BigQuery BI Engine” for lower latency analytics. However, BI Engine is limited in terms of scale because it runs in memory. Its maximum capacity is 100GB.
Databricks is designed to leverage the Spark framework for processing large volumes of data. It leverages compressed Parquet files in a Delta Lake. To reduce the amount of data processed, it uses data pruning on partitions and Parquet file metadata. Databricks does not provide any indexes.
BigQuery is a mature general-purpose data warehouse, which lends itself well to internal BI & reporting. The fact that it’s serverless in nature and tightly integrated with GCP, makes it very convenient for Ad-Hoc analytics and ML use cases on GCP. On the other hand, because BigQuery makes resource allocation decisions for you, it is not always the best fit for operational use cases and Data Apps where performance needs to be consistent and predictable.
Databricks is a mature Spark based platform proven for processing streaming data. It is widely used for Machine Learning use cases by data scientists through the use of integrated notebooks. From a low latency query perspective, while it offers features like Delta Cache, it does not provide specialized indexes that can deliver low latency queries.